1. Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de
Valladolid, Valladolid, Spain
2. Departamento de Oftalmología, Hospital Clinico Universitario de Valladolid,
Valladolid, Spain
3. Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y
Leon, Valladolid, Spain
4. Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared,
Instituto de Salud Carlos III, Valladolid, Spain
Abstract
Purpose: To quantify the pigment epithelium-derived
factor (PEDF) levels in a coculture model of physically separated neuroretina
and retinal pigment epithelium (RPE) cells, and to point out its potential role
in neuroretinal maintenance. Methods: RPE cells and neuroretina explants were
isolated from porcine eyes. RPE cells were expanded and seeded on the bottom of
Transwell® culture inserts. Neuroretina explants were cultured alone
(controls) on Transwell® culture membranes or supplemented with RPE
cells in the same wells but physically separated by the culture membrane,
during 9 days. PEDF concentration in the culture medium at 3, 5, 7 and 9 days
of culture was determined by enzyme-linked immunosorbent assays (ELISA)
specific for porcine samples. Mean statistical analysis were performed with
Pair-wise Student’s-tests. Results: Culture medium collected from neuroretina
cultures without and with RPE cells contained detectable levels of PEDF in both
conditions and at all evaluated time-points. At 3, 5, and 7 days and through
the whole time of culture PEDF concentration was significantly higher in cocultures
with RPE cells (p<0.05). Conclusions: RPE cells neuroprotective role may be
linked to the beneficial effects of neurotrophic factors, such as PEDF,
secreted or induced by RPE cells during co-culture.
Keywords: Ex vivo model; Retinal pigment
epithelium (RPE); Neuroretina; Pigment Epithelium-Derived Factor (PEDF); Neuroprotection
References
Alt, A., Hilgers, R.-D., Tura, A., Nassar, K.,
Schneider, T., Hueber, A., Januschowski, K., Grisanti, S., Lüke, J., Lüke, M.,
2013. The neuroprotective potential of Rho-kinase inhibition in promoting cell
survival and reducing reactive gliosis in response to hypoxia in isolated
bovine retina. Cell. Physiol. Biochem. 32, 218–34.
https://doi.org/10.1159/000350138
Barnstable, C.J.,
Tombran-Tink, J., 2004. Neuroprotective and antiangiogenic actions of PEDF in
the eye: molecular targets and therapeutic potential. Prog. Retin. Eye Res. 23,
561–577. https://doi.org/10.1016/J.PRETEYERES.2004.05.002
Di Lauro, S.,
Rodriguez-Crespo, D., Gayoso, M.J.M.J., Garcia-Gutierrez, M.T.M.T., Pastor,
J.C.C., Srivastava, G.K.G.K., Fernandez-Bueno, I., 2016. A novel coculture
model of porcine central neuroretina explants and retinal pigment epithelium
cells. Mol.
Vis. 22, 243–53.
Fernandez-Bueno,
I., Garcia-Gutierrez, M.T., Srivastava, G.K., Gayoso, M.J., Gonzalo-Orden,
J.M., Pastor, J.C., 2013. Adalimumab (Tumor necrosis
factor-blocker) reduces the expression of glial fibrillary acidic protein
immunoreactivity increased by exogenous tumor necrosis factor alpha in an
organotypic culture of porcine neuroretina. Mol. Vis. 19.
Fernandez-Bueno,
I., Pastor, J.C.J.C., Gayoso, M.J.M.J., Alcalde, I., Garcia, M.T.M.T., 2008. Müller and macrophage-like cell interactions in an
organotypic culture of porcine neuroretina. Mol. Vis. 14, 2148–56.
Fisher, S.K., Lewis, G.P.,
Linberg, K.A., Barawid, E., Verardo, M.R., 1995. Cellular Remodeling in
Mammalian Retina Induced by Retinal Detachment, Webvision: The Organization of
the Retina and Visual System.
Ghosh, F., Taylor, L.,
Arnér, K., 2012. Exogenous glutamate modulates porcine retinal development in
vitro. Dev. Neurosci. 34, 428–39. https://doi.org/10.1159/000343721
Jablonski, M.M.,
Tombran-Tink, J., Mrazek, D.A., Iannaccone, A., 2000. Pigment
epithelium-derived factor supports normal development of photoreceptor neurons
and opsin expression after retinal pigment epithelium removal. J. Neurosci. 20,
7149–57.
Ku B, Liang C, Jung JU, Oh
BH. Evidence that inhibition of BAX activation by BCL-2 involves its tight and
preferential interaction with the BH3 domain of BAX. 2011. Cell Research. 21:627–641.
Labrador-Velandia,
S., Alonso-Alonso, M.L., Di Lauro, S., García-Gutierrez, M.T., Srivastava, G.,
Pastor, J.C., Fernandez-Bueno, I., 2019. Mesenchymal
stem cells provide paracrine neuroprotective resources that delay degeneration
of co-cultured organotypic neuroretinal cultures. Exp. Eye Res. 185, 107671.
https://doi.org/10.1016/j.exer.2019.05.011
Lange, J., Yafai, Y.,
Reichenbach, A., Wiedemann, P., Eichler, W., 2008. Regulation of Pigment
Epithelium–Derived Factor Production and Release by Retinal Glial (Müller) Cells
under Hypoxia. Investig.
Opthalmology Vis. Sci. 49, 5161. https://doi.org/10.1167/iovs.08-2201
Martínez-Fernández
de la Cámara, C., Sequedo, M.D., Gómez-Pinedo, U., Jaijo, T., Aller, E.,
García-Tárraga, P., García-Verdugo, J.M., Millán, J.M., Rodrigo, R., 2013. Phosphodiesterase inhibition induces retinal
degeneration, oxidative stress and inflammation in cone-enriched cultures of
porcine retina. Exp. Eye Res. 111, 122–33.
https://doi.org/10.1016/j.exer.2013.03.015
Murakami Y, Ikeda Y, Yonemitsu
Y, Onimaru M, Nakagawa K, Kohno R, Miyazaki M, Hisatomi T, Nakamura M, Yabe T,
Hasegawa M, Ishibashi T, Sueishi K., 2008 Inhibition
of nuclear translocation of apoptosis-inducing factor is an essential mechanism
of the neuroprotective activity of pigment epithelium-derived factor in a rat
model of retinal degeneration. Am J Pathol. Nov; 173(5):1326-38.
Pang, I.-H., Zeng, H.,
Fleenor, D.L., Clark, A.F., 2007. Pigment epithelium-derived factor protects
retinal ganglion cells. BMC Neurosci. 8, 11. https://doi.org/10.1186/1471-2202-8-11
Pastor, J.C., Coco, R.M.,
Fernandez-Bueno, I., Alonso-Alonso, M.L., Medina, J., Sanz-Arranz, A., Rull,
F., Gayoso, M.J., Dueñas, A., Garcia-Gutierrez, M.T., Gonzalez-Buendia, L.,
Delgado-Tirado, S., Abecia, E., Ruiz-Miguel, M., Serrano, M.A., Ruiz-Moreno,
J.M., Srivastava, G.K., 2017. Acute retinal damage after using a toxic
perfluoro-octane for vitreo-retinal surgery. Retina 37.
https://doi.org/10.1097/IAE.0000000000001680
Pastor, J.C., de la Rúa,
E.R., Martín, F., 2002. Proliferative
vitreoretinopathy: risk factors and pathobiology. Prog. Retin. Eye Res. 21, 127–44.
Rodriguez-Crespo,
D., Di Lauro, S., Singh, A.K.A.K., Garcia-Gutierrez, M.T.M.T., Garrosa, M.,
Pastor, J.C.C., Fernandez-Bueno, I., Srivastava, G.K.G.K., 2014. Triple-layered mixed co-culture model of RPE cells
with neuroretina for evaluating the neuroprotective effects of adipose-MSCs.
Cell Tissue Res. 358, 705–716. https://doi.org/10.1007/s00441-014-1987-5
Strauss, O., 2005. The
retinal pigment epithelium in visual function. Physiol. Rev. 85, 845–81.
https://doi.org/10.1152/physrev.00021.2004
Unterlauft, J.D.,
Claudepierre, T., Schmidt, M., Müller, K., Yafai, Y., Wiedemann, P.,
Reichenbach, A., Eichler, W., 2014. Enhanced survival of retinal ganglion cells
is mediated by Müller glial cell-derived PEDF. Exp. Eye Res. 127, 206–14.
https://doi.org/10.1016/j.exer.2014.08.004
Publication
Received: 12/09/2019
Accepted: 06/11/2019