YIGSR sequence contained elastin like recombinamer for sustaining retinal pigment epithelium as a possible tool for retinal regenerative medicine

Girish K. Srivastava1, 3, Laura Martin 2, David Rodríguez-Crespo1, Amar K. Singh 1, Manuel J. Gayoso 1, José C. Rodríguez-Cabello 2, José C. Pastor1,3

1.     Instituto Universitario de Oftalmobiología Aplicada, Universidad de Valladolid, 47011 Valladolid, Spain.
2.     BIOFORGE Group, Universidad de Valladolid, CIBER-BBN, 47011 Valladolid, Spain.
3.     Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, 47011 Valladolid, Spain.          

Abstract

Retinal pigment epithelial (RPE) cell replacement therapy is promising for AMD patients. However, it needs a suitable surface to sustain RPE characteristics. Constructed elastin like recombinamer containing YIGSR sequence (ELR-YIGSR), using solvent-casting onto glass cover slips followed by cross-linking, was evaluated along with TCP polystyrene (control) for ARPE19 cells sustainability (cell adhesion, viability, proliferation, epithelial characteristics and cellular junctions) at 4, 24, 72 and 120 hours. Cell viability was over 90% at 72 and 120 hours. Numbers of cells adhered (42.29±24.24%) at 4 hours and grew at 4, 24, 72, and 120 hours on ELR-YIGSR surface was significantly lower (25±16, 63.5±25, 420±60 and 662±45) than that of control TCP polystyrene (49.5±25.21, 190.5±57.27, 768±67.81 and 810.3±145.2). Microscopic results confirmed epithelial characteristics (hexagonal morphology, Ecad and ZO-1protein expressions, and tight and gap junctions). Thus, it confirmed ELR-YIGSR surface sustained RPE cell characteristics. However, this needs subsequent studies with fresh human RPE cells to conclude its application in transplantation.

Keywords: ELR; YIGSR; RPE; AMD; Biomaterial

References

Aisenbrey, S., Zhang, M., Bacher, D., Yee, J., Brunken, W.J., and Hunter, D.D. (2006). Retinal pigment epithelial cells synthesize laminins, including laminin 5, and adhere to them through alpha3- and alpha6-containing integrins. Invest. Ophthalmol. Vis. Sci. 47, 5537–5544.

Alge, C.S., Hauck, S.M., Priglinger, S.G., Kampik, A., and Ueffing, M. (2006). Differential protein profiling of primary versus immortalized human RPE cells identifies expression patterns associated with cytoskeletal remodeling and cell survival. J. Proteome Res. 5, 862–878.

Alonso-Alonso, M.L., and Srivastava, G.K. (2015). Current focus of stem cell application in retinal repair. World J. Stem Cells 7, 641–648.

Arias, F.J., Santos, M., Fernández-Colino, A., Pinedo, G., and Girotti, A. (2014). Recent contributions of elastin-like recombinamers to biomedicine and nanotechnology. Curr. Top. Med. Chem. 14, 819–836.

Berg, M.C., Yang, S.Y., Hammond, P.T., and Rubner, M.F. (2004). Controlling mammalian cell interactions on patterned polyelectrolyte multilayer surfaces. Langmuir ACS J. Surf. Colloids 20, 1362–1368.

Bhutto, I., and Lutty, G. (2012). Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol. Aspects Med. 33, 295–317.

Binder, S., Stanzel, B.V., Krebs, I., and Glittenberg, C. (2007). Transplantation of the RPE in AMD. Prog. Retin. Eye Res. 26, 516–554.

Chen, H.-C., Zhu, Y.-T., Chen, S.-Y., and Tseng, S.C.G. (2012). Wnt signaling induces epithelial-mesenchymal transition with proliferation in ARPE-19 cells upon loss of contact inhibition. Lab. Investig. J. Tech. Methods Pathol. 92, 676–687.

Girotti, A., Fernández-Colino, A., López, I.M., Rodríguez-Cabello, J.C., and Arias, F.J. (2011). Elastin-like recombinamers: biosynthetic strategies and biotechnological applications. Biotechnol. J. 6, 1174–1186.

Gullapalli, V.K., Sugino, I.K., and Zarbin, M.A. (2008). Culture-induced increase in alpha integrin subunit expression in retinal pigment epithelium is important for improved resurfacing of aged human Bruch’s membrane. Exp. Eye Res. 86, 189–200.

Hynes, S.R., and Lavik, E.B. (2010). A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefes Arch. Clin. Exp. Ophthalmol. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 248, 763–778.

Khan, M., Agarwal, K., Loutfi, M., and Kamal, A. (2014). Present and possible therapies for age-related macular degeneration. ISRN Ophthalmol. 2014, 608390.

Kilic, C., Girotti, A., Rodriguez-Cabello, J.C., and Hasirci, V. (2014). A collagen-based corneal stroma substitute with micro-designed architecture. Biomater. Sci. 2, 318–329.

Martín, L., Alonso, M., Girotti, A., Arias, F.J., and Rodríguez-Cabello, J.C. (2009). Synthesis and characterization of macroporous thermosensitive hydrogels from recombinant elastin-like polymers. Biomacromolecules 10, 3015–3022.

Martínez-Osorio, H., Juárez-Campo, M., Diebold, Y., Girotti, A., Alonso, M., Arias, F.J., Rodríguez-Cabello, J.C., García-Vázquez, C., and Calonge, M. (2009). Genetically engineered elastin-like polymer as a substratum to culture cells from the ocular surface. Curr. Eye Res. 34, 48–56.

Nita, M., Strzałka-Mrozik, B., Grzybowski, A., Mazurek, U., and Romaniuk, W. (2014). Age-related macular degeneration and changes in the extracellular matrix. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 20, 1003–1016.

Nowak, J.Z. (2006). Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol. Rep. PR 58, 353–363.

Pfeffer, B.A., and Philp, N.J. (2014). Cell culture of retinal pigment epithelium: Special Issue. Exp. Eye Res. 126, 1–4.

Rodríguez-Cabello, J.C., Martín, L., Girotti, A., García-Arévalo, C., Arias, F.J., and Alonso, M. (2011). Emerging applications of multifunctional elastin-like recombinamers. Nanomed. 6, 111–122.

Singh, A.K., Srivastava, G.K., Martín, L., Alonso, M., and Pastor, J.C. (2014). Bioactive substrates for human retinal pigment epithelial cell growth from elastin-like recombinamers. J. Biomed. Mater. Res. A 102, 639–646.

Srivastava, G.K., Martín, L., Singh, A.K., Fernandez-Bueno, I., Gayoso, M.J., Garcia-Gutierrez, M.T., Girotti, A., Alonso, M., Rodríguez-Cabello, J.C., and Pastor, J.C. (2011). Elastin-like recombinamers as substrates for retinal pigment epithelial cell growth. J. Biomed. Mater. Res. A 97, 243–250.

Yonekawa, Y., and Kim, I.K. (2014). Clinical characteristics and current treatment of age-related macular degeneration. Cold Spring Harb. Perspect. Med. 5, a017178.

Zarbin, M.A. (2003). Analysis of retinal pigment epithelium integrin expression and adhesion to aged submacular human Bruch’s membrane. Trans. Am. Ophthalmol. Soc. 101, 499–520.

Zarbin, M.A., Casaroli-Marano, R.P., and Rosenfeld, P.J. (2014). Age-related macular degeneration: clinical findings, histopathology and imaging techniques. Dev. Ophthalmol. 53, 1–32.



Publication 
Ms. Ref. No.: A0101005     Reviewer 1   Reviewer 2
Received: 20042018
Accepted: 30062018
Article in Press: 01072018 
Published Online: 15072018

How to cite this paper