Girish K. Srivastava1, 3,
Laura Martin 2, David Rodríguez-Crespo1, Amar K. Singh 1,
Manuel J. Gayoso 1, José C. Rodríguez-Cabello 2, José C.
Pastor1,3
1.
Instituto Universitario de
Oftalmobiología Aplicada, Universidad de Valladolid, 47011 Valladolid, Spain.
2.
BIOFORGE Group, Universidad de
Valladolid, CIBER-BBN, 47011 Valladolid, Spain.
3.
Centro en Red de Medicina
Regenerativa y Terapia Celular de Castilla y León, 47011 Valladolid,
Spain.
Abstract
Retinal pigment epithelial (RPE) cell replacement
therapy is promising for AMD patients. However, it needs a suitable surface to
sustain RPE characteristics. Constructed elastin like recombinamer containing
YIGSR sequence (ELR-YIGSR), using solvent-casting onto glass cover slips
followed by cross-linking, was evaluated along with TCP polystyrene (control)
for ARPE19 cells sustainability (cell adhesion, viability, proliferation,
epithelial characteristics and cellular junctions) at 4, 24, 72 and 120 hours.
Cell viability was over 90% at 72 and 120 hours. Numbers of cells adhered
(42.29±24.24%) at 4 hours and grew at 4, 24, 72, and 120 hours on ELR-YIGSR
surface was significantly lower (25±16, 63.5±25, 420±60 and 662±45) than that
of control TCP polystyrene (49.5±25.21, 190.5±57.27, 768±67.81 and
810.3±145.2). Microscopic results confirmed epithelial characteristics
(hexagonal morphology, Ecad and ZO-1protein expressions, and tight and gap
junctions). Thus, it confirmed ELR-YIGSR surface sustained RPE cell
characteristics. However, this needs subsequent studies with fresh human RPE
cells to conclude its application in transplantation.
Keywords: ELR; YIGSR; RPE; AMD; Biomaterial
References
Aisenbrey, S., Zhang, M., Bacher, D., Yee, J.,
Brunken, W.J., and Hunter, D.D. (2006). Retinal pigment epithelial cells
synthesize laminins, including laminin 5, and adhere to them through alpha3-
and alpha6-containing integrins. Invest. Ophthalmol. Vis. Sci. 47, 5537–5544.
Alge, C.S., Hauck, S.M., Priglinger, S.G., Kampik, A.,
and Ueffing, M. (2006). Differential protein profiling of primary versus
immortalized human RPE cells identifies expression patterns associated with
cytoskeletal remodeling and cell survival. J. Proteome Res. 5, 862–878.
Alonso-Alonso, M.L., and Srivastava, G.K. (2015).
Current focus of stem cell application in retinal repair. World J. Stem Cells
7, 641–648.
Arias, F.J., Santos, M., Fernández-Colino, A., Pinedo,
G., and Girotti, A. (2014). Recent contributions of elastin-like recombinamers
to biomedicine and nanotechnology. Curr. Top. Med. Chem. 14, 819–836.
Berg, M.C., Yang, S.Y., Hammond, P.T., and Rubner,
M.F. (2004). Controlling mammalian cell interactions on patterned
polyelectrolyte multilayer surfaces. Langmuir ACS J. Surf. Colloids 20,
1362–1368.
Bhutto, I., and Lutty, G. (2012). Understanding
age-related macular degeneration (AMD): relationships between the
photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris
complex. Mol. Aspects Med. 33, 295–317.
Binder, S., Stanzel, B.V., Krebs, I., and Glittenberg,
C. (2007). Transplantation of the RPE in AMD. Prog. Retin. Eye Res. 26,
516–554.
Chen, H.-C., Zhu, Y.-T., Chen, S.-Y., and Tseng,
S.C.G. (2012). Wnt signaling induces epithelial-mesenchymal transition with
proliferation in ARPE-19 cells upon loss of contact inhibition. Lab. Investig.
J. Tech. Methods Pathol. 92, 676–687.
Girotti, A., Fernández-Colino, A., López, I.M.,
Rodríguez-Cabello, J.C., and Arias, F.J. (2011). Elastin-like recombinamers:
biosynthetic strategies and biotechnological applications. Biotechnol. J. 6,
1174–1186.
Gullapalli, V.K., Sugino, I.K., and Zarbin, M.A.
(2008). Culture-induced increase in alpha integrin subunit expression in
retinal pigment epithelium is important for improved resurfacing of aged human
Bruch’s membrane. Exp. Eye Res. 86, 189–200.
Hynes, S.R., and Lavik, E.B. (2010). A
tissue-engineered approach towards retinal repair: scaffolds for cell
transplantation to the subretinal space. Graefes Arch. Clin. Exp. Ophthalmol.
Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 248, 763–778.
Khan, M., Agarwal, K., Loutfi, M., and Kamal, A.
(2014). Present and possible therapies for age-related macular degeneration.
ISRN Ophthalmol. 2014, 608390.
Kilic, C., Girotti, A., Rodriguez-Cabello, J.C., and
Hasirci, V. (2014). A collagen-based corneal stroma substitute with
micro-designed architecture. Biomater. Sci. 2, 318–329.
Martín, L., Alonso, M., Girotti, A.,
Arias, F.J., and Rodríguez-Cabello, J.C. (2009). Synthesis and characterization
of macroporous thermosensitive hydrogels from recombinant elastin-like
polymers. Biomacromolecules 10, 3015–3022.
Martínez-Osorio, H., Juárez-Campo,
M., Diebold, Y., Girotti, A., Alonso, M., Arias, F.J., Rodríguez-Cabello, J.C.,
García-Vázquez, C., and Calonge, M. (2009). Genetically engineered
elastin-like polymer as a substratum to culture cells from the ocular surface.
Curr. Eye Res. 34, 48–56.
Nita, M., Strzałka-Mrozik, B., Grzybowski, A.,
Mazurek, U., and Romaniuk, W. (2014). Age-related macular degeneration and
changes in the extracellular matrix. Med. Sci. Monit. Int. Med. J. Exp. Clin.
Res. 20, 1003–1016.
Nowak, J.Z. (2006). Age-related macular degeneration
(AMD): pathogenesis and therapy. Pharmacol. Rep. PR 58, 353–363.
Pfeffer, B.A., and Philp, N.J. (2014). Cell culture of
retinal pigment epithelium: Special Issue. Exp.
Eye Res. 126, 1–4.
Rodríguez-Cabello, J.C., Martín, L.,
Girotti, A., García-Arévalo, C., Arias, F.J., and Alonso, M. (2011). Emerging applications of
multifunctional elastin-like recombinamers. Nanomed. 6, 111–122.
Singh, A.K., Srivastava, G.K., Martín, L., Alonso, M.,
and Pastor, J.C. (2014). Bioactive substrates for human retinal pigment
epithelial cell growth from elastin-like recombinamers. J. Biomed. Mater. Res. A 102, 639–646.
Srivastava, G.K., Martín, L., Singh,
A.K., Fernandez-Bueno, I., Gayoso, M.J., Garcia-Gutierrez, M.T., Girotti, A.,
Alonso, M., Rodríguez-Cabello, J.C., and Pastor, J.C. (2011). Elastin-like recombinamers as
substrates for retinal pigment epithelial cell growth. J. Biomed. Mater. Res. A
97, 243–250.
Yonekawa, Y., and Kim, I.K. (2014). Clinical
characteristics and current treatment of age-related macular degeneration. Cold
Spring Harb. Perspect. Med. 5, a017178.
Zarbin, M.A. (2003). Analysis of retinal pigment
epithelium integrin expression and adhesion to aged submacular human Bruch’s
membrane. Trans. Am. Ophthalmol. Soc. 101, 499–520.
Zarbin, M.A., Casaroli-Marano, R.P., and Rosenfeld,
P.J. (2014). Age-related macular degeneration: clinical findings,
histopathology and imaging techniques. Dev. Ophthalmol. 53, 1–32.
Received: 20042018
Accepted: 30062018
Article in Press: 01072018
Article in Press: 01072018